بهره‌گیری از الگوریتم‌های یادگیری ماشین در مراحل اولیۀ طراحی؛ نمونه موردی: تخمین اولیۀ ابعاد عناصر سازه‌ای در ساختمان‌های متداول

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فناوری معماری، دانشکدۀ معماری و شهرسازی، دانشگاه شهید بهشتی

2 دانشیار دانشکدۀ معمارى و شهرسازى دانشگاه شهید بهشتى

3 استادیار دانشکدۀ معماری و شهرسازی دانشگاه شهید بهشتی

چکیده

اهداف و پیشینه: تخمین و تعیین ابعاد اجزای سازه در مراحل اولیۀ طراحی همیشه از مسائل مهمی است که طراحان معمار با آن درگیر هستند. این موضوع تا حد زیادی بر اساس تجربۀ شخصی و در اکثر موارد از سوی افراد دارای اندک پشتوانۀ علمی صورت می‌پذیرد. این روش دارای خطای زیاد و بازدهی بسیار پایین است که طراحان را وامی‌دارد تا با زمان محاسبۀ ابعاد دقیق اجزای سازه، متکی بر مفروضات خود، طراحی و ساخت را پیش ببرند. تخمین اشتباه می‌تواند منجر به دوباره‌کاری و افزایش هزینه‌های پروژه شود. از طرف دیگر، اگرچه امروزه برای تعیین ابعاد سازه‌ها از ابزارهای تحلیل و طراحی سازه با تنوع و گستردگی بسیار بالا استفاده می‌شود، اما برای تصمیم‌گیری در مراحل اولیۀ طراحی، روش و ابزار خاصی وجود ندارد. درنتیجه امکان مقایسۀ گزینه‌های مختلف که لازمۀ طراحی دقیق و کارآمد است، در این مرحله ممکن نیست. هدف اصلی در اینجا دستیابی به روش و ابزاری برای تخمین ابعاد حدودی اجزای سازه‌ای (در این پژوهش سازه‌های قاب خمشی فولادی و بتنی)، بدون نیاز به استفاده از فرمول‌های زمان‌بر و پیچیده یا استفاده از نرم‌افزارهای شبیه‌سازی است؛ ابزاری که بتواند فاصلۀ تصمیم‌گیری در مورد اجزای سازه‌ای بین طراح و محاسب سازه را بکاهد و از بسیاری از دعاوی در زمان ساخت جلوگیری کند.
مواد و روشها: به‌طورکلی، فرایند تصمیم‌گیری و طراحی سازه‌ای شامل متغیرهای متعدد و متنوعی نظیر انتخاب نوع سیستم سازه‌ای، انتخاب نوع مصالح، انتخاب مقاطع مناسب سازه‌ای، انتخاب آیین‌نامه‌های مناسب هر منطقه، و سایر عواملی است که این فرایند را پیچیده‌تر و انتخاب پاسخ بهینه و مناسب را دشوارتر می‌کند. در پژوهش حاضر تلاش شده است تا برخی از این پارامترهای مهم در قالب چارچوبی نسبتاً محدود گنجانده شود تا ابزاری تصمیم‌یار عرضه گردد که بتواند فاصلۀ میان معمار و مهندس سازه را از منظر دیدگاه مشترک بکاهد. در گام نخست، یک مجموعه داده از سازه‌های شبیه‌سازی‌شده در حالت‌های مختلف ایجاد گردید و در گام بعد، چندین مدل یادگیری ماشین با استفاده از دو الگوریتم شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان توسعه داده شد. نتایج حاکی از آن است که در ساختمان‌های فولادی، الگوریتم شبکۀ عصبی مصنوعی نسبت به الگوریتم ماشین بردار پشتیبان عملکرد بهتری دارد و میانگین ضریب تعیین (R²) برابر با 0٫93 و میانگین درصد خطای مطلق (MAPE) برابر با 0٫05 حاصل شده است. درحالی‌که در ساختمان‌های بتنی، الگوریتم ماشین بردار پشتیبان عملکرد مطلوب‌تری نشان داده و ضریب تعیین 0٫93 و میانگین درصد خطای مطلق 0٫06 را کسب کرده است.
نتایج و جمعبندی: در حدود پنجاه سال گذشته، نمودارهای تقریبی مختلفی برای راهنمایی کاربران عرضه شده است که اطلاعات بسیار ساده و کاربردی را برای برآورد اولیۀ ابعاد بر اساس تجربه و برخی تحلیل‌ها در اختیار قرار می‌دهد. اگرچه آگاهی از مبانی نظری این اجزا اهمیت دارد، توانایی ارزیابی سریع پیامدهای انتخاب یک دهانۀ خاص، آرایش ستون‌ها، یا بارگذاری مشخص نیز بسیار حایز اهمیت است.
در این پژوهش با هدف کمک به جامعۀ مهندسی، به‌ویژه طراحان معماری، ابزاری معرفی شده است. ابزاری که با دریافت ورودی‌هایی نظیر ابعاد زمین، ابعاد دهانه‌ها، تعداد طبقات، و نوع مصالح مورد استفاده، می‌تواند برآورد اولیه‌ای عرضه کند که به نتایج حاصل از تحلیل و طراحی سازه‌ای بسیار نزدیک باشد، اما زمان و هزینۀ کمتری نیاز دارد. متدولوژی به‌کاررفته در این مطالعه قابلیت گسترش دارد و می‌توان با افزودن متغیرهایی نظیر انواع مختلف مصالح مورد استفاده در صنعت ساخت‌وساز، بررسی فرم‌ها و سازه‌های معماری پیچیده با آرایش‌های نامنظم اعضای سازه‌ای، افزایش تعداد طبقات مورد بررسی، و همچنین با بررسی سقف‌هایی با سیستم‌های متفاوت، دامنۀ کاربری آن را توسعه داد.

کلیدواژه‌ها


عنوان مقاله [English]

Using Machine Learning Algorithms in the Early Stages of Design, in Initial Estimations for Structural Elements’ Sizes in Conventional Residential Buildings in Tehran

نویسندگان [English]

  • Seyed Amirmohammad Rabbani Jalali 1
  • Mohammad Hoonejani 1
  • Mohammad Tahsildoost 2
  • Roham Afghani Khoraskani 3
1 Msc., Faculty of Architecture and Urban Planning, Shahid Beheshti University
2 Associate Professor, Faculty of Architecture and Urban Planning, Shahid Beheshti University
3 Assistant Professor , Faculty of Architecture and Urban Planning, Shahid Beheshti University,
چکیده [English]

Background and objectives: Estimating and determining the sizes of structural components in the early stages of design is always one of the important issues architectural designers are involved with. It is largely based on personal experience carried out by people without engineering background. This is highly erratic and inefficient, forcing designers to rely on assumptions. This, in turn can result in reworkings and increased costs. On the other hand, whilst a large variety of analyses and design methods are used to determine sizes, there is no decision-making method for early design stages. it is not possible, therefore, to consider options that require precision at this stage. The main goal of this research is to obtain a method and a tool to estimate the approximate f structural components’ sizes without the need to use time-consuming and complex formulas or the use of simulation software: a tool that can reduce the decision-making gap between the designer and the structural engineer and prevent any possible subsequent lawsuits.  
Materials and methods: In general, structural decision-making and design involve many variables such as choosing the type of structural system, choosing the type of materials, appropriate structural profile, applicable regulations, and occasionally other considerations. Attemptswere made in this study to include some of these important considerations in a rather limited framework to achieve a decision-making tool that will bring the architect and the structural engineer closer to each other. To start, a set of simulated structures in different states was created, followed by creation of machine learning models with Artificial Neural Network and Support Vector Machine. Consequently, it became clear that the Artificial Neural Network is better than the Support Vector Machine when it comes to predictions for steel structures, with average R2 score of 0.93 and average MAPE of 0.05.In concrete buildings, the Support Vector Machine algorithm performed better with R2 score of 0.93 and average MAPE of 0.06.
Results and conclusion: For about 50 years, there have been various rough diagrams to guide the user, providing very simple and practical information on the initial estimation of sizes based on experience and some analysis. While it is important to know the theories behind these elements, it is also important to be able to quickly assess the consequences of choosing a particular span, column arrangement, or loading. With the aim of helping engineers, and especially architectural designers, this study introduced a tool, that can efficiently be used to take inputs such as land dimensions, span dimensions, number of stories, and type of materials used to produce an initial estimate that is close to what is achieved by structural analysis and design tools. The methodology used in this study can be expanded to include variables such as different materials used in the construction industry, examining complex architectural forms and structures with irregular arrangements of structural members, increasing the number of floors, and examining roofs with different structures.

کلیدواژه‌ها [English]

  • The early stages of design
  • structural sizes estimation
  • Machine learning
  • Artificial neural network
  • support vector machine
Ampanavos, Spyridon, Mehdi Nourbakhsh, and Chin-Yi Cheng. “Structural Design Recommendations in the Early Design Phase Using Machine Learning”. Communications in Computer and Information Science, 2021, 1-14.
Anwar, Naveed and Fawad Ahmed Najam. “Structures and Structural Design”. in Structural Cross Sections, 2017. https://doi.org/10.1016/b978-0-12-804443-8.00001-4
Barg, Steve, Forest Flager, and Martin Fischer. “An Analytical Method to Estimate the Total Installed Cost of Structural Steel Building Frames during Early Design”. Journal of Building Engineering, 15 (2018): 41-50. https://doi.org/10.1016/j.jobe.2017.10.010.
Bradner, Erin, Francesco Iorio, and Mark Davis. “Parameters Tell the Design Story: Ideation and Abstraction in Design Optimization”. Simulation Series, 46(7) (2014): 172-197.
Brown, Nathan C. and Caitlin T. Mueller. “Automated Performance-Based Design Space Simplification for Parametric Structural Design”. Proceedings of the IASS Annual Symposium, 2017.
Brown, Nathan C., Violetta Jusiega, and Caitlin T. Mueller. “Implementing Data-Driven Parametric Building Design with a Flexible Toolbox”. Automation in Construction, 118 (October 2020):103252. https://doi.org/10.1016/J.AUTCON.2020.103252.
Buscema, Paolo Massimo, Giulia Massini, Marco Breda, Weldon A. Lodwick, Francis Newman, and Masoud Asadi-Zeydabadi. “Artificial Neural Networks”. In Studies in Systems, Decision and Control, 131 (2018):11-35. https://doi.org/10.1007/978-3-319-75049-1_2
Celani, Gabriela, and Carlos Eduardo Verzola Vaz. “CAD Scripting and Visual Programming Languages for Implementing Computational Design Concepts: A Comparison from a Pedagogical Point of View”. International Journal of Architectural Computing, 10(1) (2012): 121-137. https://doi.org/10.1260/1478-0771.10.1.121
Chang, A.S.T., J. S. Shih, and Y.S. Choo. “Reasons and Costs for Design Change during Production”. Journal of Engineering Design, 22(4) (2011): 275-289. https://doi.org/10.1080/09544820903425218.
Chang, Kai Hung, and Chin Yi Cheng. “Learning to Simulate and Design for Structural Engineering”. in 37th International Conference on Machine Learning, ICML, 2020, Part F16814:1403-1413.
Charleson, A.W. and S. Pirie. “An Investigation of Structural Engineer-Architect Collaboration”. SESOC Journal, 22 (1) (2009): 97-104.
Ehrlenspiel, Klaus, Alfons Kiewert, Udo Lindemann. Cost-Efficient Design. Ed. Mahendra S. Hundal. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-34648-7
Evers, R.F.M.H.G.A. “Cost Based Engineering and Production of Steel Constructions”. in Steel Design Codes-Fourth International Workshop on Connections in Steel Structurese, 2000.
Forouzandeh, Nima, Mohammad Tahsildoost, and ZahraSadat Zomorodian. “A Review of Web-Based Building Energy Analysis Applications”. Journal of Cleaner Production 306 (2021):127251. https://doi.org/10.1016/j.jclepro.2021.127251
Haapio, J. Feature-Based Costing Method for Skeletal Steel Structures Based on the Process Approach. Tampere University of Technology, 2012.
Haber, David and Saeed Karshenas. “An Expert System for Conceptual Design of Buildings”. Proceedings of the 4th International Symposium on Automation and Robotics in Construction (ISARC), November 2017. https://doi.org/10.22260/isarc1987/0051
Hamidavi, Tofigh, Sepehr Abrishami, and M.Reza Hosseini. “Towards Intelligent Structural Design of Buildings: A BIM-Based Solution”. Journal of Building Engineering, 32 (November 2020):101685. https://doi.org/10.1016/j.jobe.2020.101685
Haque, Mohammed E. “An Artificial Neural Network Model for Preliminary Design of Reinforced Concrete Beam-Column”. In ASEE Annual Conference Proceedings, 2002, 1705-1712.
Jalal, Mostafa, Ali A. Ramezanianpour, Ali R. Pouladkhan, and Payman Tedro. “Application of Genetic Programming (GP) and ANFIS for Strength Enhancement Modeling of CFRP-Retrofitted Concrete Cylinders”. Neural Computing and Applications, 23(2) (2013): 455-470. https://doi.org/10.1007/s00521-012-0941-2
Jung, Youngsoo, and Mihee Joo. “Building Information Modelling (BIM) Framework for Practical Implementation”. Automation in Construction, 20(2) (2011): 126-133. https://doi.org/10.1016/j.autcon.2010.09.010
Kanyilmaz, Alper, Patricia Raquel Navarro Tichell, and Daniele Loiacono. “A Genetic Algorithm Tool for Conceptual Structural Design with Cost and Embodied Carbon Optimization”. Engineering Applications of Artificial Intelligence, 112 (September 2022): 104711. https://doi.org/10.1016/j.engappai.2022.104711
Kubat, Miroslav. An Introduction to Machine Learning. Springer, 2017. https://doi.org/10.1007/978-3-319-63913-0
Málaga-Chuquitaype, Christian. “Machine Learning in Structural Design: An Opinionated Review”. Frontiers in Built Environment, 8 (February 2022): 1-12. https://doi.org/10.3389/fbuil.2022.815717
Mote, H. and S.R. Satish Kumar. “Use of Artificial Neural Network for Initial Design of Steel Structures”. in IOP Conference Series: Materials Science and Engineering, 660 (1) (2019). https://doi.org/10.1088/1757-899X/660/1/012064.
Of Inistry, Tudy of, Cheme In, Esign of, and Flood Protection. “S Ultanate of O Man M Inistry of R Egional P Art B: P Reliminary D Esign of Flood Protection Dams a Ppendix : P Reliminary D Esign D Rawings”. July 2009, 184-192.
Pan, Yue and Limao Zhang. “Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends”. Automation in Construction, 122 (December 2020): 103517. https://doi.org/10.1016/j.autcon.2020.103517
Ruddy, John L. and Socrates A. Ioannides. “Rules of Thumb for Steel Design”. Proceedings of the 2004 Structures Congress - Building on the Past: Securing the Future, February 2004, 1683-1689.
Salehi, Hadi and Rigoberto Burgueño. “Emerging Artificial Intelligence Methods in Structural Engineering”. Engineering Structures, 171 (May 2018): 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
Tong, Fei and Xila Liu. “Samples Selection for Artificial Neural Network Training in Preliminary Structural Design”. Tsinghua Science and Technology, 10(2) (2005): 233-239. https://doi.org/10.1016/S1007-0214(05)70060-2
Tseranidis, Stavros, Nathan C. Brown, and Caitlin T. Mueller. “Data-Driven Approximation Algorithms for Rapid Performance Evaluation and Optimization of Civil Structures”. Automation in Construction, 72 (2016):279-293. https://doi.org/10.1016/j.autcon.2016.02.002