کاهش مصرف انرژی و بهبود آسایش حرارتی و بصری در خانه‌ها با سناریو‌های کنترل سایه‌بان: تحلیل پارامتریک و بهینه‌سازی با یادگیری ماشین در بندرعباس، یزد، ساری و تبریز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکدۀ معماری و شهرسازی، دانشگاه شهید بهشتی

2 استادیار دانشکدۀ معماری و شهرسازی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

اهداف و پیشینه: پیش‌بینی می‌شود که با افزایش چشمگیر مصرف انرژی در بخش ساختمان‌ها تا سال 2040، بهینه‌سازی مصرف انرژی در این بخشْ یکی از اهداف اصلی در زمینۀ توسعۀ پایدار گردد. در این زمینه، طراحی سیستم‌های سایه‌بان، که ابزاری است برای کنترل تابش خورشیدی و کاهش بارهای سرمایشی و گرمایشی، نقشی حیاتی در ارتقای کارایی انرژی دارد. هدف اصلی در این مطالعه، شناسایی استراتژی‌های کنترلی بهینۀ سایه‌بان‌ها با در نظر گرفتن عوامل مختلف مانند موقعیت سایه‌بان، جهت‌گیری ساختمان، و شرایط اقلیمی است. در این تحقیق، با بهره‌گیری از نرم‌افزارهای انرژی پلاس و جی‌پلاس، سناریوهای مختلف طراحی سایه‌بان به‌صورت پارامتریک در چهار شهر با اقلیم‌های متفاوت (بندرعباس، یزد، ساری، و تبریز) مدل‌سازی و بهینه‌سازی شده‌اند. هدف نهایی در این پژوهش، یافتن سناریویی برای کاهش مصرف انرژی و ارتقای آسایش حرارتی و بصری کاربران است و تمرکز اصلی بر ارزیابی تأثیر انتخاب استراتژی کنترلی مناسب سایه‌بان‌ها در دستیابی به اهداف است.
مواد و روشها: در این تحقیق از مدل استاندارد اتاق مسکونی مشابه نمونۀ 600 مطابق با استاندارد ANSI/ASHRAE 140-2017 استفاده شده است. در این مطالعه، 19 سناریوی مختلف برای کنترل سایه‌بان‌ها بررسی گردیده که ترکیبی از موقعیت سایه‌بان (داخلی و خارجی)، جهت‌گیری ساختمان، استراتژی‌های کنترلی سایه‌بان، نقاط تنظیم، و شرایط اقلیمی هستند. متغیرهای خروجی شامل بار سرمایشی، بار گرمایشی، بار الکتریکی روشنایی، مصرف کل انرژی، و ساعات نارضایتی حرارتی و بصری ساکنان می‌شوند. مدل‌سازی انرژی با استفاده از نرم‌افزار انرژی پلاس انجام شده و برای تحلیل و بهینه‌سازی طراحی، از ابزار جی‌پلاس استفاده شده است. برای پیش‌بینی مصرف انرژی ساختمان و ارزیابی تأثیر متغیرهای مختلف، مدل یادگیری ماشین جنگل تصادفی به کار رفته است و برای تفسیر نتایج و تعیین میزان اهمیت هر ویژگی در پیش‌بینی‌های مدل، از الگوریتم SHAP استفاده شده است.
نتایج و جمعبندی: بنابر نتایج این تحقیق، استفاده از استراتژی‌های کنترلی بهینه برای سایه‌بان‌ها می‌تواند به‌طور قابل‌توجهی مصرف انرژی را کاهش دهد. در تابستان، کاهش مصرف انرژی در شهرهای بندرعباس، یزد، ساری، و تبریز به‌ترتیب 18٫8، 35٫2، 37٫8، و 45٫5٪ بود و در زمستان نیز کاهش مصرف انرژی به‌ترتیب 4٫3، 0٫8، 2٫7، و 1٫5٪ ثبت شد. همچنین، طراحی بهینۀ سایه‌بان‌ها باعث کاهش قابل‌توجه نارضایتی حرارتی و بصری ساکنان می‌گردد؛ به‌طور نمونه، در تابستان زمان مطالعه، نارضایتی حرارتی در تبریز تا 64٫2٪ و نارضایتی بصری در همۀ شهرها تا 100٪ کاهش داشت. طبق این یافته‌ها، انتخاب استراتژی کنترلی مناسب و آستانه‌های فعال‌سازی مؤثر می‌تواند مصرف انرژی را کاهش دهد و آسایش حرارتی و بصری ساکنان را بهبود بخشد. در تابستان، سایه‌بان‌های خارجی با کنترل دمای بیرون در بندرعباس و سایه‌بان‌های خارجی با کنترل دمای داخل در یزد و تبریز بهترین گزینه‌ها از نظر کاهش مصرف انرژی و افزایش آسایش ساکنان شناخته شدند. در زمستان نیز بهترین سناریوها شامل کنترل‌کننده‌های مبتنی بر دمای بیرون با تنظیم‌کنندگی متناسب برای هر اقلیم بودند، نتایج این تحقیق نشان‌دهندۀ اهمیت انتخاب استراتژی کنترلی متناسب با شرایط اقلیمی و نیازهای خاص هر منطقه است که می‌تواند در طراحی پایداری و بهینه‌سازی مصرف انرژی در ساختمان‌های مسکونی استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimising Energy Performance and Thermal Comfort with Shading Control Scenarios in Bandar Abbas, Yazd, Sari, and Tabriz Using Parametric Analysis and Machine-Learning

نویسندگان [English]

  • Fateme Akhlaghinezhad 1
  • Hadi Bagheri Sabzevar 2
1 PhD Candidate,, Faculty of Architecture and Urban Planning, Shahid Beheshti University, Tehranm, Iran
2 Assistant Professor, Faculty of Architecture and Urban Planning, Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

Background and objectives: The growing demand for energy efficiency in buildings has become a central objective for sustainable development, as the building sector is expected to significantly raise its share of global energy consumption by 2040. Shading systems can therefore play a crucial role by controlling solar heat gain, and thus reducing the cooling and heating loads. This study aims to identify optimal shading control strategies by considering variables such as shading position, building orientation, and climate conditions. EnergyPlus and jEPlus are employed here for parametric modelling and optimisation of various shading scenarios across four Iranian cities: Bandar Abbas, Yazd, Sari, and Tabriz. The primary objective is to reduce energy consumption and enhance both thermal and visual comfort for occupants, with a specific focus on assessing the impact of appropriate shading control strategies in achieving these goals.
Materials and Methods: This study utilises a standard residential room model similar to Test Case 600, as outlined in the ANSI/ASHRAE 140-2017 standard. A total of 19 different shading control scenarios were analysed, incorporating varieties in shading position (internal or external), building orientation, shading control strategies, activation thresholds, and climate conditions. The predictive variables considered include cooling load, heating load, electrical lighting load, total energy consumption, and the number of hours of thermal discomfort (PPD index) and visual discomfort (DGI index) experienced by the occupants. Energy modelling was performed using EnergyPlus, while parametric design optimisation is conducted with jEPlus. To predict energy consumption and assess the influence of various parameters, a Random Forest machine learning model was employed. Additionally, the SHAP (SHapley Additive exPlanations) algorithm was used to interpret the model’s predictions, providing a detailed understanding of the contribution of each input variable.
Results and conclusion: The results demonstrate that optimised shading control strategies can significantly reduce energy consumption. In the summer, total energy use decreased by 18.8% in Bandar Abbas, 35.2% in Yazd, 37.8% in Sari, and 45.5% in Tabriz. In winter, reductions ranged from 0.8% in Yazd to 4.3% in Bandar Abbas. Additionally, optimised shading design and control led to a substantial reduction in both thermal and visual discomfort. For instance, in Tabriz, thermal discomfort decreased by 64.2%, while visual discomfort was reduced by up to 100% across all cities. The study concludes that selecting the appropriate shading control strategy and activation threshold not only reduces energy consumption but also enhances both thermal and visual comfort for building occupants. Specifically in the summer, external shading with outdoor temperature control in Bandar Abbas, and external shading with indoor temperature control in Yazd and Tabriz, were identified as the most effective strategies for reducing energy consumption and improving comfort. In winter, the most effective strategy involves controls based on outdoor temperature, with varying activation thresholds tailored to each climate. Overall, the study emphasises the critical importance of climate-adapted control strategies in designing energy-efficient and comfortable residential buildings, thereby contributing to the advancement of sustainable architecture across diverse climatic regions.

کلیدواژه‌ها [English]

  • Shading control
  • Energy consumption
  • Thermal and visual comfort
  • EnergyPlus
  • Random Forest machine learning
  • SHAP algorithm
Ahmad, Muhammad Waseem, Monjur Mourshed, and Yacine Rezgui. “Trees vs Neurons: Comparison between Random Forest and Ann for High-Resolution Prediction of Building Energy Consumption”. Energy and Buildings, 147 (2017): 77-89.
Akhlaghinezhad, F. and H. Bagheri Sabzevar. “The Effect of Probabilistic Window Opening Behavior of Occupants on Adaptive Thermal Comfort (the Case of Courtyard House in Yazd, Bandar Abbas, and Tabriz)”. Iranica Journal of Energy & Environment, vol. 14, no. 3 (2023): 252-262.
Akhlaghinezhad, Fateme, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi, and Arman Nikkhah Dehnavi. “Deterministic and Probabilistic Occupant-Centric Control’s Impacts on the Indoor Environment in Free-Running Households”. Smart and Sustainable Built Environment, no. ahead-of-print (2024). https://doi.org/10.1108/sasbe-10-2023-0316.
Araya, Daniel B, Katarina Grolinger, Hany F. ElYamany, Miriam A.M. Capretz, and Girma Bitsuamlak. “An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption”. Energy and Buildings, 144 (2017): 191-206.
ASHRAE Standing Standard Project Committee 55. Cognizant TC: 2.1, Physiology, and Human Environment. Thermal Environmental Conditions for Human Occupancy. Ashrae, 2023.
Balador, Zahra, Fatemeh Imani, and Morten Gjerde. “Evaluation of Different Shading Devices for a Tehran Primary School Classroom”. Paper presented at the PLEA Conf, 2017.
Bassi, Abnash, Anika Shenoy, Arjun Sharma, Hanna Sigurdson, Connor Glossop, and Jonathan H. Chan. “Building Energy Consumption Forecasting: A Comparison of Gradient Boosting Models”. Paper presented at the Proceedings of the 12th International Conference on Advances in Information Technology, 2021.
Bustamante, Waldo, Daniel Uribe, Sergio Vera, and Germán Molina. “An Integrated Thermal and Lighting Simulation Tool to Support the Design Process of Complex Fenestration Systems for Office Buildings”. Applied Energy, 198 (2017): 36-48.
Dokhanian, Fahimeh, Mostafa Mohajerani, Hassan Estaji, and Morteza Nikravan. “Shading Design Optimization in a Semi-Arid Region: Considering Energy Consumption, Greenhouse Gas Emissions, and Cost”. Journal of Cleaner Production, 428 (2023): 139293.
Fanger, Poul O. Thermal Comfort: Analysis and Applications in Environmental Engineering. Danish Technical Press, 1970.
Figueroa-Lopez, Anna, Alba Arias, Xabat Oregi, and Iñigo Rodríguez. “Evaluation of Passive Strategies, Natural Ventilation and Shading Systems, to Reduce Overheating Risk in a Passive House Tower in the North of Spain During the Warm Season”. Journal of Building Engineering, 43 (2021): 102607.
Firląg, Szymon, Mehrangiz Yazdanian, Charlie Curcija, Christian Kohler, Simon Vidanovic, Robert Hart, and Stephen Czarnecki. “Control Algorithms for Dynamic Windows for Residential Buildings”. Energy and Buildings, 109 (2015): 157-173.
Garcia, Dayan de Loyola Ramos and Fernando Oscar Ruttkay Pereira. “Method Application and Analyses of Visual and Thermal-Energy Performance Prediction in Offices Buildings with Internal Shading Devices”. Building and Environment, 198 (2021): 107912.
Haghighi, Nasim, Somayeh Asadi, and Hamed Babaizadeh. “The Effect of Shading Design and Materials on Building Energy Demand”. International Construction Specialty Conference of the Canadian Society for Civil Engineering (ICSC), 2015.
Hopkinson, Ralph Galbraith. “Glare from Daylighting in Buildings”. Applied Ergonomics, vol. 3, no. 4 (1972): 206-215.
Kim, Dongsu, Sam J. Cox, Heejin Cho, and Jongho Yoon. “Comparative Investigation on Building Energy Performance of Double Skin Façade (Dsf) with Interior or Exterior Slat Blinds”. Journal of Building Engineering, 20 (2018): 411-423.
LBNL, EnergyPlus. “Energy Plus Documentation: Getting Started with Energyplus”. EnergyPlus Engineering Reference, Input and Output Reference, 2010.
Light, CEN. “Lighting—Basic Terms and Criteria for Specifying Lighting Requirements”. European Standard EN 12665, 2011.
Littlefair, PJ. Control of Solar Shading. BRE, 2002.
Lundberg, Scott M. and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”. Advances in Neural Information Processing Systems, 30 (2017).
Magri Elouadjeri, Sahar, Aicha Boussoualim, and Hassan Ait Haddou. “Evaluating the Effect of External Horizontal Fixed Shading Devices’ Geometry on Internal Air Temperature, Daylighting and Energy Demand in Hot Dry Climate; Case Study of Ghardaïa, Algeria”. Buildings, vol. 11, no. 8 (2021): 348.
Naderi, Ehsan, Behrang Sajadi, Mohammadali Akhavan Behabadi, and Erfan Naderi. “Multi-Objective Simulation-Based Optimization of Controlled Blind Specifications to Reduce Energy Consumption, and Thermal and Visual Discomfort: Case Studies in Iran”. Building and Environment, 169 (2020): 106570.
National Building Regulations of Iran. Chapter 19: Energy Conservation. Tehran, Iran: Iranian National Building Regulations, 2020.
Newsham, GR. “Manual Control of Window Blinds and Electric Lighting: Implications for Comfort and Energy Consumption”. Indoor Environment, vol. 3, no. 3 (1994): 135-144.
Neymark, J., R. Judkoff, M. Kummert, R. Muehleisen, A. Johannsen, N. Kruis, Jason Glazer, et al. Update of Ashrae Standard 140 Section 5.2 and Related Sections (Bestest Building Thermal Fabric Test Cases). Argonne National Lab. (ANL), Argonne, IL (United States), 2020.
O’Donovan, Adam, Michael D Murphy, and Paul D O’Sullivan. “Passive Control Strategies for Cooling a Non-Residential Nearly Zero Energy Office: Simulated Comfort Resilience Now and in the Future”. Energy and Buildings, 231 (2021): 110607.
Oh, Myung Hwan, Kwang Ho Lee, and Jong Ho Yoon. “Automated Control Strategies of inside Slat-Type Blind Considering Visual Comfort and Building Energy Performance”. Energy and Buildings, 55 (2012): 728-737.
Peel, Murray C., Brian L. Finlayson, and Thomas A. McMahon. “Updated World Map of the Köppen-Geiger Climate Classification”. Hydrology and Earth System Sciences, vol. 11, no. 5 (2007): 1633-1644.
Pinto, Maria Cristina, Giulia Crespi, Federico Dell’Anna, and Cristina Becchio. “Combining Energy Dynamic Simulation and Multi-Criteria Analysis for Supporting Investment Decisions on Smart Shading Devices in Office Buildings”. Applied Energy, 332 (2023): 120470.
Raton, Boca. Handbook of Quantile Regression. CRC Press: FL, USA, 2017.
Sanati, Leyla, and Michael Utzinger. “The Effect of Window Shading Design on Occupant Use of Blinds and Electric Lighting”. Building and Environment, 64 (2013): 67-76.
Santos, Matheus Tonelli, Maria Akutsu, and Adriana Camargo de Brito. “Method for Determining the Efficiency of Shading Devices”. Paper presented at the 50th International Conference of the Architectural Science Association, 2016.
Shen, Eric, Maulin Patel, and Jia Hu. “Comparison of Energy and Visual Comfort Performance of Independent and Integrated Lighting and Daylight Controls Strategies”. Paper presented at the ACEEE Summer Study on Energy Efficiency in Industry, 2013.
Skarning, Gunnlaug Cecilie Jensen, Christian Anker Hviid, and Svend Svendsen. “The Effect of Dynamic Solar Shading on Energy, Daylighting and Thermal Comfort in a Nearly Zero-Energy Loft Room in Rome and Copenhagen”. Energy and Buildings, 135 (2017): 302-311.
Soflaei, Farzaneh, Mehdi Shokouhian, and Seyed Majid Mofidi Shemirani. “Investigation of Iranian Traditional Courtyard as Passive Cooling Strategy (a Field Study on Bs Climate)”. International Journal of Sustainable Built Environment, vol. 5, no. 1 (2016): 99-113.
Tabadkani, Amir, Astrid Roetzel, Hong Xian Li, and Aris Tsangrassoulis. “A Review of Automatic Control Strategies Based on Simulations for Adaptive Facades”. Building and Environment, 175 (2020): 106801.
Tabadkani, Amir, Astrid Roetzel, Hong Xian Li, and Aris Tsangrassoulis. “A Review of Occupant-Centric Control Strategies for Adaptive Facades”. Automation in Construction, 122 (2021): 103464.
Tabadkani, Amir, Astrid Roetzel, Hong Xian Li, Aris Tsangrassoulis, and Shady Attia. “Analysis of the Impact of Automatic Shading Control Scenarios on Occupant’s Comfort and Energy Load”. Applied Energy, 294 (2021): 116904.
Tan, Yutong, Jinqing Peng, Yimo Luo, Jing Gao, Zhengyi Luo, Meng Wang, and Dragan C. Curcija. “Parametric Study of Venetian Blinds for Energy Performance Evaluation and Classification in Residential Buildings”. Energy, 239 (2022): 122266.
Touzani, Samir, Jessica Granderson, and Samuel Fernandes. “Gradient Boosting Machine for Modeling the Energy Consumption of Commercial Buildings”. Energy and Buildings, 158 (2018): 1533-1543.
U.S. Department of Energy. Energyplus Engineering Reference. U.S. Department of Energy, 2022. URL: https://energyplus.net.
Van Den Wymelenberg, Kevin. “Patterns of Occupant Interaction with Window Blinds: A Literature Review”. Energy and Buildings, 51 (2012): 165-176.
Winter, Eyal. “The Shapley Value”. Handbook of Game Theory with Economic Applications, 3 (2002): 2025-2054.
Xiong, Jie and Athanasios Tzempelikos. “Model-Based Shading and Lighting Controls Considering Visual Comfort and Energy Use”. Solar Energy, 134 (2016): 416-428.
Zhang, Liang, Jin Wen, Yanfei Li, Jianli Chen, Yunyang Ye, Yangyang Fu, and William Livingood. “A Review of Machine Learning in Building Load Prediction”. Applied Energy, 285 (2021): 116452.
Zhang, Yi, and Ivan Korolija. “Performing Complex Parametric Simulations with Jeplus”. In: 9th International Conference on Sustainable Energy Technologies, SET 2010. Shanghai Jiao Tong University: Shanghai, China, 2010.
Zhong, Xuyang, Zhiang Zhang, Wei Wu, and Ian Ridley. “Comprehensive Evaluation of Energy and Indoor-Pm2. 5-Exposure Performance of Residential Window and Roller Blind Control Strategies”. Energy and Buildings, 223 (2020): 110206.
Zhou, Nan, Lynn Price, Dai Yande, Jon Creyts, Nina Khanna, David Fridley, Hongyou Lu, et al. “A Roadmap for China to Peak Carbon Dioxide Emissions and Achieve a 20% Share of Non-Fossil Fuels in Primary Energy by 2030”. Applied Energy, 239 (2019): 793-819.