تحلیل عوامل تبیین نقش هوش مصنوعی در برنامه‌ریزی شهری و توسعۀ شهرها

نوع مقاله : مقاله پژوهشی

نویسندگان

کارشناس ارشد برنامه‌ریزی شهری، دانشکدة معماری و هنر، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

پیشینهها و اهداف: ارتباط بین هوش مصنوعی و برنامه‌ریزی شهری یک زمینة تحقیقاتی جدید است که از دهة گذشته اهمیت قابل‌توجهی در حوزه‌های مختلف ازجمله شهرسازی و برنامه‌ریزی شهری یافته است. تا کنون محققان کاربرد هوش مصنوعی را در حوزه‌های مختلف شهری مانند برنامه‌ریزی‌های حمل‌ونقل، انرژی، کاربری زمین، و ساختمان‌سازی بررسی کرده‌اند.
یکی از مهم‌ترین کاربردهای هوش مصنوعی مدیریت حمل‌ونقل شهری است. پژوهشگران با توسعة سیستم‌هایی، از طریق استفاده از حسگرها و واحدهای محاسباتی در خودروها و زیرساخت‌های جاده‌ای، امکان ارزیابی زمان واقعی جابه‌جایی در بزرگراه‌ها را فراهم کرده‌اند. همچنین، با کمک سیستم‌هایی مانند Stmp و بهره‌گیری از داده‌های حسگرها، اینترنت اشیا، و رسانه‌های اجتماعی به پیش‌بینی جریان ترافیک و عرضة راه‌حل‌های مدیریتی می‌پردازند. در زمینة حفاظت از محیط زیست و کیفیت هوا، هوش مصنوعی نقش نظارت و هشدار دارد. با سیستم‌هایی مانند C-Air و با استفاده از میکروسکوپ و الگوریتم‌های یادگیری ماشینی، امکان بررسی کیفیت هوا و شناسایی ذرات موجود در آن فراهم است. این قابلیت‌ها به برنامه‌ریزان در دستیابی به شهری پایدارتر و سالم‌تر کمک می‌کند. مدیریت انرژی نیز از دیگر حوزه‌های کاربرد هوش مصنوعی است. پژوهشگران با استفاده از این فناوری، به پیش‌بینی بار الکتریکی و تشخیص مقدار انرژی مصرفی در مناطق مختلف و بررسی عواملی مانند ویژگی‌های ساختمان و تعداد اعضای خانواده و شغل آنها می‌پردازند. مدیریت منابع آبی نیز با هوش مصنوعی نشت آب را در سیستم‌های توزیع منطقه‌ای می‌یابد و از هدررفت آن جلوگیری و مصرف این مایع حیاتی را بهتر کنترل می‌کند. به‌طورکلی، با این سیستم در برنامه‌ریزی و مدیریت شهری هوشمند، امکان تصمیم‌گیری‌های خودکار و هوشمند در زمینه‌های مختلف فراهم است. این امر نه‌تنها کیفیت زندگی شهروندان، بلکه توسعة پایدار شهرها را نیز بهبود می‌بخشد. ازاین‌‌‌رو هوش مصنوعی نقش مؤثری در برنامه‌ریزی شهری و در نحوة برخورد با عوامل مختلف و تأثیر‌ بر محیط شهری دارد. در این پژوهش کاربرد هوش مصنوعی در حوزه‌های مختلف برنامه‌ریزی شهری بررسی و روند شکل‌گیری آن در پژوهش‌های پیشین ردیابی می‌شود.
مواد و روشها: در این پژوهش دو مسیر طی‌ شده است. در مسیر نخست، از یک‌سو، پایه‌هاى نظرى هوش مصنوعی در شهرها (شامل تعریف، ابعاد، و کاربردهای آن در شهرها) بررسى و از سوى دیگر، خواسته‌هاى توسعة شهرى و چالش‌های به‌کارگیری آن در سیستم برنامه‌ریزى ردیابى شده است. روش پژوهش در مرحلة نخست هم‌گذاری نتایج مطالعات نظرى است؛ بدین‌ترتیب گردآورى، پردازش، و تحلیل اطلاعات مربوط به چارچوب‌‌نظرى و تجربى مرتبط با موضوع پژوهش، با مراجعه به متون و پژوهش‌هاى مرتبط، به‌منظور بررسی اصول برنامه‌ریزى توسعة‌ شهرى مبتنی بر هوش مصنوعی، با رویکردى توصیفى انجام شده است. مسیر دوم با رویکرد علم‌سنجی، تحلیل استنادی، و هم‌رخدادی واژگان طی شده است. این روش با هدف تعیین اثرگذارترین واژگان منابع در مورد موضوع پژوهش، با استفاده از نرم‌افزار VOSViewer انجام شده است. جامعة آماری پژوهش 2337 مقاله‌ بود که با موضوع «هوش مصنوعی و برنامه‌ریزی شهری» از اولین انتشار در سال 1999 تا به امروز در پایگاه استنادی ساینس دایرکت نمایه شده است. خروجی نرم‌افزار بر اساس تجزیه‌وتحلیل عناوین، چکیده‌های مقالات، و کلیدواژگان مهم آنها به‌دست آمده است.
نتیجهها و جمع بندی: در این مطالعه ارتباط بین مهم‌ترین حوزه ‌‌های موضوعی مقالات مختلف منتشرشده حول مفهوم هوش مصنوعی و نقش آن در برنامه‌ریزی شهری بیان شده است. بررسی داده‌های به‌دست‌آمده از مقاله‌های یادشده نشان داد که 6 خوشة موضوعی تأثیر مستقیم بر نقش هوش مصنوعی در شهرسازی داشته‌اند. همچنین طی سال‌های اخیر مفاهیم مرتبط با رویکرد پژوهش از مفاهیم متمرکز بر بررسی اولیة موضوع هوش مصنوعی و نحوة عملکرد آن، به روش‌های نوینی برای حل مشکلات شهری تغییر مسیر یافته‌اند. در مقالات خوشة نخست با پرتکرارترین کلیدواژه‌های مورد بررسی، مسائل بااهمیت حال حاضر شهرها همانند: آلودگی هوا، حمل‌ونقل، تاب‌آوری، اقتصاد، و ... و کاربرد هوش مصنوعی در حل مسائل آنها بررسی شده است و هدف در مطالعات این خوشه این بوده که با استفاده از هوش مصنوعی تحولات عمده‌ای در صنعت دیجیتال و شهرها ایجاد گردد. به‌طورکلی در هریک از خوشه‌ها به گونه‌ای به موضوعات پراهمیت در شهرها و روش‌های جدید در جهت ایجاد محلی مناسب‌تر برای زندگی شهروندان اشاره شده است. نکتة قابل‌توجه اینکه، هوش مصنوعی در ابتدای پیدایش، موضوعی نو در مطالعات بود، اما با گذر زمان و با وجود مشکلات موجود در شهرها، این رویکرد به روشی برای حل مسائل و مشکلات شهری ارتقا یافت و امروز بسیاری از سیستم‌های هوش مصنوعی در چارچوب طرح‌های شهر هوشمند استفاده می‌شوند. تصمیم‌گیری‌های خودکار، مدیریت زیرساخت‌ها، به حداقل رساندن اشتباهات، تجزیه‌وتحلیل داده‌ها، عرضة خدمات، و بهبود بهره‌وری از محورهای کاربردی هوش مصنوعی در شهرها و برنامه‌ریزی شهری است. به‌کارگیری هوش مصنوعی در شهر و برنامه‌ریزی شهری موجب بلوغ سیستمی در سازمان‌ها و نهادهای تصمیم‌گیری و اجرایی شهرها می‌گردد. از سویی دیگر، تنوع اهداف و کاربردهای هوش مصنوعی، شهر و آن سازمان‌ها و نهادهایش را ملزم می‌کند تا شرایط لازم را برای پذیرش موفقیت‌آمیز هوش مصنوعی ایجاد کنند. گرچه هوش مصنوعی امکان تعامل با فناوری را برای سازمان‌ها و ذی‌نفعان آنها فراهم می‌کند، ولی لازم است بیشتر به کاربردهای سالم هوش مصنوعی، پیامدهای اخلاقی، کسب دانش و تجربه در آن، و مدیریت سیستم توجه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Role of AI in Urben Planning and Development

نویسندگان [English]

  • Seyedeh Zahra Hosseini
  • Rojin Raofi
  • Zahra Zarabadi Pour
  • Samane Moghadam
MSc, Faculty of Architecture and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Background and objectives: The connection between artificial intelligence (AI) and urban planning is a burgeoning research area that has gained significant traction in recent years. Researchers have explored the potential of AI in various urban planning domains, including transportation planning, energy management, land-use planning, and building construction. One of the most prominent applications of AI in cities is traffic management. Researchers have developed systems that utilise sensors and computational units embedded in vehicles and road infrastructure to assess real-time traffic conditions on highways. Additionally, there are systems like C-Air leverage sensor data, the Internet of Things (IoT), and social media to predict traffic flow and propose management solutions. In the realm of environmental protection and air quality, AI plays a crucial role in monitoring and issuing alerts. Systems like C-Air employ microscopes and machine learning algorithms to analyse air quality and identify pollutants. These capabilities empower urban planners to create more sustainable and healthy cities. Energy management is another key area where AI finds application in cities. Utilising AI technology, researchers can predict electrical load and identify energy consumption patterns across different zones. Building characteristics, household size, and occupant demographics and the like are thus factored into these predictions. Similarly, AI-powered water management systems have the potential to detect leaks within distribution networks, thereby preventing water loss and promoting efficient water utilisation. Overall, the adoption of AI in smart city planning and management facilitates automated and intelligent decision-making across various domains. This not only enhances the quality of life for city residents but also contributes significantly to the sustainable development of urban environments. As such, this research aims to investigate the applications of AI in diverse urban planning domains and trace the evolution of this concept in previous studies.
Methods: This applied research utilises a two-pronged approach. First, a theoretical foundation is established by examining AI’s definition, applications in cities, and the challenges of integrating it into urban planning systems. This stage involves a descriptive analysis of relevant theoretical and empirical studies to understand the principles of AI-based urban development planning.
Second, a scientometric approach is employed using VOSviewer software. This method involves citation analysis and co-occurrence of keywords to identify the most prominent research areas related to AI and urban planning. The research population comprises 2337 articles on “artificial intelligence and urban planning” indexed in the ScienceDirect database, published from 1999 to the present. Analysis focuses on titles, abstracts, and keywords to generate a schematic representation of the research landscape.
Findings & Conclusion: The study delved into the intricate relationship between artificial intelligence (AI) and urban planning, drawing upon a comprehensive analysis of published literature. By examining 2337 articles indexed in the ScienceDirect database within the specified timeframe, the study identified six thematic clusters that profoundly impact AI’s role in shaping cities. The thematic clusters unveiled a remarkable shift in the research focus, transitioning from exploring AI’s fundamental concepts and mechanisms to embracing novel approaches for tackling urban challenges. The first cluster, encompassing the most frequently discussed keywords, highlighted pressing urban issues such as air pollution, transportation, resilience, and economic development, emphasising AI’s potential to revolutionize the digital landscape and urban environments. Overall, the identified clusters underscore the multifaceted applications of AI in urban planning, encompassing areas such as smart cities, data-driven planning, infrastructure management, citizen engagement, disaster management, and ethical considerations. These findings demonstrate AI’s transformative power in addressing critical urban challenges and promoting sustainable development. However, the study also underscores the need for careful consideration of AI’s ethical implications and the establishment of robust governance frameworks. This is crucial to ensure that AI is utilised responsibly and for the benefit of all urban residents. As cities and organisations embrace AI’s transformative potential, they must prioritise ethical practices, responsible data usage, and effective system management to maximise AI’s positive impact on urban planning and governance.

کلیدواژه‌ها [English]

  • Artificial intelligence
  • Urban artificial intelligence
  • Urban planning
  • Scientometrics
  • VOSviewer
Beroche, Hubert. Urban AI. Paris: Urban AI, 2021. Retrieved from https://urbanai.fr/wp-content/uploads/2021/03/URBAN-AI-1.pdf
Batty, Michael. “Artificial Intelligence and Smart Cities”. Environment and Planning B: Urban Analytics and City Science, vol. 45, isssue. 1 (Jan. 2018): 3-6. Available at: https://doi.org/10.1177/2399808317751169
________ . “Urban Modeling”. in International Encyclopedia of Human Geography, edited by Nigel Thrift and Rob Kitchin, Oxford, UK: Elsevier, 2009, 51-58. Available at: https://doi.org/10.1016/B978-008044910-4.01092-0
Bostrom, Nick. “Strategic Implications of Openness in AI Development”. Global Policy, vol. 8, no.2 (May 2017): 135-48. Available at: https://doi.org/10.1111/1758-5899.12403
Bagheri, Bagher, Hossein Azadi, Ali Soltani, and Frank Witlox. “Global City Data Analysis Using SciMAT: A Bibliometric Review”. Environment, Development and Sustainability, vol. 26, no. 6 (Jun 2023): 1-25. Available at: https://doi.org/10.1007/s10668-023-03255-4
Ding, Xue. “Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer”. in Proceedings of the 5th International Conference on Economics, Management, Law and Education (EMLE 2019), 2019. Available at: https://doi.org/10.2991/aebmr.k.191225.081
Gruen, David. “Artificial Intelligence in Government Social Service Agencies”. Merative, United States of America, 2022, 1-8.
Hamidah, Ida, Sriyono Sriyono, Muhammad Nur Hudha, and Ijost Ijost. “A Bibliometric Analysis of Covid-19 Research Using VOSviewer”. Indonesian Journal of Science and Technology, vol. 5, no.2 (Sep. 2020): 209-216. Available at: https://doi.org/10.17509/ijost.v5i2.24522
Hick, David, Adam Urban, and Jorg R. Noennig. “A Pattern Logic for a Citizen-Generated Subjective Quality of Life Index in Neighborhoods”. in 2nd UK Engineering Mechanics Conference (UKEMC), 2019. Available at: https://doi.org/10.1109/UKRCON.2019.8879987
Jiang, MingZhuo. “Urban Planning Reform Trend Based on Artificial Intelligence”. Journal of Physics, vol. 1533, no. 3 (Apr 2020): 1-5. Available at: https://doi.org/10.1088/1742-6596/1533/3/032020
Kaatz-Dubberke, Tony and Lennard Kehl. “Artificial Intelligence in Smart City Applications: An Overview”. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2020.
Khademi, R. and G. Heydari. “Drawing the Subject Structure of Information Management Using the Vocabulary Matching Method during the Years 1986 to 2012”. Quarterly Journal of Information Management Sciences and Techniques, vol. 2, no. 2 (Sep. 2016): 59-93. (In Persian)
Khademi, R. and H. MoradiMoghadam. “Drawing a Scientific Map of the Research Field of Divorce Using Co-Citation Analysis”. Caspian Journal of Scientometrics, no. 13 (Aug. 2020): 62-68. (In Persian)
Khaseh, A., H. Mokhtari, and N. Aghayi. “A Scientometric Analysis and Visualization of the Scientific Output of the Library and Information Science Quarterly during 2009-2018”. Library and Information Sciences, vol. 24, no. 1 (Apr. 2021): 78-110. (In Persian)
Kumar Jha, Avinash, Awishkar Ghimire, Surendrabikram Thapa, Aryan Mani Jha, and Ritu Raj. “A Review of AI for Urban Planning: Towards Building Sustainable Smart Cities”. in 6th International Conference on Inventive Computation Technologies (ICICT), 2021, 937-944. Available at: https:// doi.org/10.1109/ICICT50816.2021.9358548
Larsson, Stefan. “On the Governance of Artificial Intelligence through Ethics Guidelines”. Asian Journal of Law and Society, vol. 7, no. 3 (Oct. 2020): 437-451. Available at: https://doi.org/10.1017/als.2020.19
Nikitas, Alexandros, Kalliopi Michalakopoulou, Eric Tchouamou Njoya, and Dimitris Karampatzakis. “Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era”. Sustainability, vol. 12, no. 2789 (Apr. 2020): 2-19. Available at: https://doi.org/10.3390/su12072789
Popelka, Sarah, Laura Narvaez Zertuche, and Hubert Beroche. “A Guide Urban Artificial Intelligence: AI Guide”. in Urban AI, 2023. Available at: https://doi.org/10.5281/zenodo.77088333
Perianes-Rodriguez, Antonio, Ludo Waltman, and Nees Jan van Eck. “Constructing Bibliometric Networks: A Comparison between Full and Fractional Counting”. Journal of Informetrics, vol.10, no. 4 (Nov. 2016): 1178-1195. Available at: https://doi.org/10.1016/j.joi.2016.10.006
Sanchez, Thomas W., Hannah Shumway, Trey Gordner, and Theo Lim. “The Prospects of Artificial Intelligence in Urban Planning”. International Journal of Urban Sciences, vol. 27, no. 2 (Jul. 2022): 179-194. Available at: doi:10.1080/12265934.2022.2102538
Taeihagh, Araz. “Governance of Artificial Intelligence”. Policy and Society, vol. 40, no. 2 (Jun. 2021): 137-157. Available at: https://doi.org/10.1080/14494035.2021.1928377
Ullah, Fawad, Lei SHEN, and Syed Hamad Hassan Shah. “Value Co-creation in Business-to-business Context: A Bibliometric Analysis Using HistCite and VOSviewer”. Frontiers in Psychology, vol. 13, no. 1027775 (Jan. 2023). Available at: https://doi.org/10.3389/fpsyg.2022.1027775
Urban, Adam, Jorg Robert Noening, David Hick, and Dietrich Kammer. “With a Little Help from AI: Pros and Cons of AI in Urban Planning and Participation”. International Journal of Urban Planning and Smart Cities, vol. 2, no. 2 (Jun. 2021): 19-33. Available at: https://doi.org/10.4018/IJUPSC.202107010
Van Eck, Nees Jan, and Ludo Waltman. Manual for VOSviwer version 1.6.10, CWTS Meaningful Metrics, 2019.
Van Eck, Nees Jan, and Ludo Waltman. “Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping”. Scientometrics, vol. 84, no. 2 (Jun. 2010): 523-538. Available at: https://doi.org/10.1007/s11192-009-0146-3
Yigitcanlar, Tan, R.Y.M. Li Tommi Inkinen, and Alexander Paz. “Public Perceptions on Application Areas and Adoption Challenges of AI in Urban Services”. Emerging Sciences Journal, vol. 6, no. 6 (Sep. 2022): 1199-1236. Available at: https://doi.org/10.28991/ESJ-2022-06-06-01
Yigitcanlar, Tan, Duzgun Agdas, and Kenan Degirmenci. “Artificial Intelligence in Local Governments: Perceptions of City Managers on Prospects, Constraints and Choices”. AI & Society, vol. 38, no.3 (May 2022): 1135-1150. Available at: https://doi.org/10.1007/s00146-022-01450-x
Yigitcanlar, Tan, Juan M. Corchado, Rashid Mehmood, Rita Yi Man Li, Karen Mossberger, and Kevin Desouza. “Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda”. Journal of Open Innovation: Technology, Market, and Complexity, vol. 7, no. 1 (Mar. 2021): 1-16. Available at: https://doi.org/10.3390/joitmc7010071
Zhou, Ya and Atreyi Kankanhalli. “AI Regulation for Smart Cities: Challenges and Principles”. in Public Administration and Information Technology, vol. 37, no. 5 (Mar. 2021):101-118. Available at: https://www.researchgate.net/publication/350116016_AI_Regulation_for_Smart_Cities_Challenges_and_Principles