تأثیر ویژگی‌های هندسی عرصه‌های شهری بر دمای سطح زمین نمونۀ موردی: کلان‌شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری معماری، دانشگاه شهید بهشتی

2 استاد دانشکدۀ معماری و شهرسازی، دانشگاه شهید بهشتی

3 استادیار گروه ساختمان دانشکده معماری و شهرسازی دانشگاه شهید بهشتی

چکیده

در دهه‌های اخیر چیدمان هندسی و عناصر ریخت‌شناسی شهرها به مثابۀ عوامل مؤثر بر شکل‌گیری و شدت بخشیدن به پدیدۀ جزیرۀ حرارتی بیش‌ازپیش شناخته و پژوهش‌هایی در خصوص یافتن تأثیرات شاخص‌های معرف این موضوعات در مقیاس‌های فضایی مختلف بر این پدیده انجام شده است، هرچند تأثیر مکانی‌ـ زمانی این شاخص‌ها و نیز مدلی برای تفسیر و طبقه‌بندی آن‌ها تنها در سالیان اخیر موضوع برخی از مطالعات بوده است. متأسفانه مطالعات در زمینۀ شاخص‌های طرح‌شده در شهرهای بزرگ و مهم کشور کماکان مغفول مانده و پژوهش‌هایی با این زمینه کمتر صورت گرفته است. در این مقاله نحوۀ ارتباط میان دمای سطح زمین با طبقات ریخت‌شناسانۀ محیط انسان‌ساخت مطابق با الگوی عرصه‌های اقلیم محلی، که یک چارچوب استاندارد برای توصیف شکل و عملکرد شهرها در مطالعات اقلیم شهری است، مطالعه و ارزیابی شده است. عرصه‌های اقلیم محلی برای مناطق شهری کلان‌شهر تهران بر اساس روش پیشنهادی پورتال پایگاه اطلاعات شهری جهان مطالعه و ارزیابی شده و مناطق شهری تهران درمجموع به هفده طبقۀ مربوط به هندسۀ احجام ساختمانی و پوشش اراضی، با وضوح (رزولوشن) 100 متر و توسط ابزارهای پایش شهری و سامانه‌های اطلاعات جغرافیایی نظیر Google Earth، ArcGIS، و SAGA GIS و با بهره‌گیری از تصاویر ماهواره‌ای لندست 8 در طول یک سال طبقه‌بندی گردیده است. نتایج تحلیل‌های فضایی و آماری نشان داد که در طول سال بیشترین شدت جزایر حرارتی مربوط به عرصه‌های فاقد ساختار ساختمانی و همچنین ساختارهای درشت‌دانه و صنعتی بوده و کمترین تفاوت با میانگین دمای کلیۀ سطوح شهری تهران مربوط به طبقات با ساختارهای بلندمرتبۀ فشرده و کوتاه‌مرتبۀ پراکنده است. همچنین ساختارهای کوتاه‌مرتبه و میان‌مرتبۀ فشرده کمترین میانگین دمایی را در طول سال در کل شهر داشته‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Urban Geometrical Properties on Land Surface Temperature; the Case of the Tehran Metropolitan Area

نویسندگان [English]

  • Pouria Ameri 1
  • ُShahram Pourdeihimi 2
  • Saeed Mashayekh Faridani 3
1 Faculty of Architecture and Urban Planning, Shahid Beheshti University
2 Professor Emeritus, Faculty of Architecture and Urban Planning, Shahid Beheshti University
3 Professor Emeritus, Faculty of Architecture and Urban Planning, Shahid Beheshti University
چکیده [English]

In the recent decades, the geometric layouts and morphological elements of cities have increasingly been recognised as influencing the formation and intensification of the urban heat island phenomenon, with many researches conducted on finding the indicators representing these issues in various scales. Although the spatio-temporal effects of these indicators, as well as models for their interpretation and classification has been the subject of some recent studies worldwide, these studies are almost entirely missing for Iranian cases. The present paper studies and assesses the relationship between the land surface temperature and the morphological parameters of the built environment according to the concept of local climate zones, which is a standard framework for describing the form and function of cities in urban climate studies. The local microclimate zones of the Tehran metropolitan area have been studied and assessed based on the method proposed by the World Urban Database and Access Portal Tools. They are classified under seventeen groups in terms of their building geometries and land cover, with a resolution of 100 meters, using Landsat 8 satellite imagery data over the course of a year, integrated by geographic information systems and earth monitoring tools such as Google Earth, ArcGIS and SAGA GIS. The results of spatial and statistical analyses showed that over a year, the highest intensity of surface urban heat islands was related to areas without structures, as well as large-scale, low-rise industrial zones, with high-density, high-rise, and low-density low-rise classes having the least differences with the average land surface temperature. Also, the high-density, low-rise and mid-rise structures have had the lowest average temperature in the whole city during the year.

کلیدواژه‌ها [English]

  • Heat Island phenomenon
  • Land surface temperature
  • Urban morphologies
  • Built environment geometries
  • Local microclimate
ابراهیمی هروی، بهروز و کاظم رنگزن و حمیدرضا ریاحی بختیاری و ایوب تقی‌زاده. «تعیین مناسب‌ترین روش استخراج دمای سطح زمین با استفاده از تصاویر ماهوارة لندست 8 در کلان‌شهر کرج»، در سنجش از دور و GIS ایران، ش 31 (پاییز 1395)، ص 59-76.
دفتر برنامه‌ریزی کلان برق و انرژِی. ترازنامة انرژی سال 1393، تهران: وزارت نیرو، معاونت امور برق و انرژِی، 1395.
سالنامة آماری شهر تهران، آمارنامه شهر تهران 1397: سالنامه آماری شهر تهران، تهران: انتشارات سازمان فناوری اطلاعات و ارتباطات شهرداری تهران، 1397.
عامری، پوریا. هندسة محیط و پدیدة جزیرة حرارتی، رسالة دکتری رشتة معماری به راهنمایی شهرام پوردیهیمی و سعید مشایخ فریدنی، دانشکدة معماری و شهرسازی، دانشگاه شهید بهشتی، شهریورماه 1399.
مرکز آمار ایران. سالنامة آماری کشور 1393، تهران: مرکز آمار ایران، 1394.
 
Arnfield, A.J. “Two Decades of Urban Climate Research: a Review of Turbulance, Exchanges of Energy and Water, and the Urban Heat Island”, in International Journal of Climatology, 23(1) (2003), pp. 1-26.
Bechtel, Benjamin & Paul J. Alexander & Jurgen Bohner & Jason Ching & Olaf Conrad & Johannes Feddema & Gerald Mills & Linda See & Iain Stewart. “Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities”, in ISPRS International Journal of Geo-Information, 4 (2015), pp. 199-219.
Bechtel, Benjamin & Matthias Demuzere & Gerald Mills & Wenfeng Zhan & Panagiotis Sismanidis & Christopher Small & James Voogt. “SUHI Analysis Using Local Climate Zones- A Comparison of 50 Cities”, in Urban Climate, (28) (2019), pp. 1-18.
Bonan, G.B. “The Microclimates of Suburban Colorado (USA) Landscape and Implications for Planning and Design”, in Landscape and Urban Planning, 49(3) (2000), pp. 97-114.
Bottyan, Z. & A. Kircsi & S. Szegedi & J. Unger. “The Relationship between Built-up Areas and the Spatial Development of the Mean Maximum Urban Heat Island in Debrecen, Hungary”, in International Journal of Climatology, 25 (2005), pp. 405-418.
Bottyan, Z. & J. Unger. “A Multiple Linear Statistical Model for Estimating the Mean Maximum Urban Heat Island”, in Theoretical and Applied Climatology, 75 (2003), pp. 233-243.
Chen, L. & R. Jiang & W.N. Xiang. “Surface Heat Island in Shanghai and Its Relationship with Urban Development from 1989 to 2013”, in Advances in Meteorology, 2016, pp. 1-15.
Ching, J. & G. Mills & B. Bechtel & L. See & J. Feddema & J. Wang & C. Ren, et al. “WUDAPT- An Urban Weather, Climate, and Environmental Modeling Infrastructure for the Anthropecene”, in Bulletin of American Meteorological Society, 2018, pp. 1907-1924.
Ching, Jason & Dan Aliaga & Gerald Mills & Valery Masson & Linda See & Marina Neophytou & Ariane Middel, et al. “Pathway Using WUDAPT’s Digital Synthetic City Tool towards Generating Urban Canopy Parameters for Multi-scale Urban Atmospheric Modeling”, in Urban Climate, 28 (2019), pp. 1-23.
Conard, O. & B. Bechtel & M. Bock & H. Dietrich & E. Fischer & L. Gerlitz & J. Wehberg & V. Wichmann & J. Bohner. “System for Automated Geoscientific Analyses (SAGA) v. 2.1.4”, in Geoscientific Model Development, 8 (2015), pp. 1991-2007.
Department of the Interior, U.S. Geological Survey. LANDSAT 8 (L8) Data User’s Handbook, 2016.
Kantzioura, A. & P. Kosmopoulos & S. Zoras. “Urban Surface Temperature and Microclimate Measurements in Thessaloniki”, in Energy & Buildings, 44 (2012), pp. 63-72.
Liu, Lin & Yuanzhi Zhang. “Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong”, in Remote Sensing, 3 (2011), pp. 1535-1552.
Mills, Gerald. “Cities as Agents of Global Change”, in International Journal of Climatology, 27 (2007), pp. 1849-1857.
Ng, Edward & Chao Ren. The Urban Climatic Map for Sustainable Urban Planning, New York: Routledge, 2015.
Oke, T.R. Boundary Layer Climates, London, England: Routledge, 1987.
Oke, Timothy R. & Gerald Mills & Andreas Christen & James A. Voogt. Urban Climates, Cambridge: Cambridge University Press, 2017.
Sekertekin, Aliihsan & Stefania Bonafoni. “Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation”, in Remote Sensing, 12(2) (2020), p. 294.
Sobrino, Jose A. & Juan C. Jimenez-Munoz & Leonardo Paolini. “Land Surface Temperature Retrieval from LANDSAT TM 5”, in Remote Sensing of Environment, 90 (2004), pp. 434-440.
Sobstyl, J.M. & T. Emig & M.J. Abdolhoseini Qomi & F.J. Ulm & R.J.M. Pellenq. “Role of City Texture in Urban Heat Island at Nighttime”, in Physical Review Letters, 120 (2018), pp. 1-6.
Steward, I.D. & T.R. Oke. “Local Climate Zones for Urban Temperature Studies”, in Bulletin of American Meteorological Society, 2012, pp. 1880-1900.
Stone, B. & J.M. Norman. “Land Use Planning and Surface Heat Island Formation: A Parcel-based Radiation Flux Approach”, in Atmospheric Environment, 40 (2006), pp. 3561-3573.
United Nations, Department of Economics and Social Affairs. World Population to 2300, New York: United Nations, Department of Economic and Social Affairs, Population Division, 2004.
Voogt, J.A. & T.R. Oke. “Thermal Remote Sensing of Urban Climates”, in Remote Sensing of Environment, 86(3) (2003), pp. 370-384.
Weng, Q. “Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends”, in ISPRS Journal of Photogrammetry and Remote Sensing, 64(4) (2009), pp. 335-344.
Wu, Chih-Da & Shi-Chun Candice Lung. “Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature”, in Nature Scientific Reports, 6 (2016), pp. 1-9.
Xu, Yong & Chao Ren & Peifeng Ma & Justin Ho & Weiwen Wang & Kevin Ka-Lun Lau & Hui Lin & Edward Ng. “Urban Morphology Detection and Computation for Urban Climate Research”, in Landscape and Urban Planning, 167 (2017), pp. 212-234.
Yang, X. & Y. Li. “The Impact of Building Density and Building Height Heterogeneity on Average Urban Albedo and Street Surface Temperature”, in Building and Environment, (90) (2015), pp. 146-156.
Yang, Xiaojun. Urban Remote Sensing: Monitoring, Synthesis and Modeling in the Urban Environment, John Wiley & Sons, 2011.
Zhang, J. & Y. Wang & Y. Li. “A C++ Program for Retrieving Land Surface Temperature from the Data of Landsat TM/ETM+ Band6”, in Computers & Geosciences, 32 (2006), pp. 1796-1805.
USGS Earth Explorer. Accessed, 2019.
https://earthexplorer.usgs.gov/.